We present a 2.218 lm image from the Hubble Space Telescope/Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and a 55 lm image from ISOPHOT of the dust ring surrounding the luminous blue variable (LBV) candidate HD 168625, together with new temperature and optical depth maps derived from mid-IR images. The shell is detached from the star in the near-IR, and substructure in the overall toroidal shell is visible. The far-IR image constrains the extent of the dust shell to 2500 in diameter, providing an upper radius limit for modeling. The temperature maps and the NICMOS image show evidence for very small transiently heated dust grains in the shell. The opacity maps show higher optical depth in the limbs, consistent with interpretation of the dust shell as an equatorially enhanced torus inclined 60 with respect to the observer. An overall trend in the dust emission location with wavelength is observed and interpreted as a variation with respect to location in the nebula of either the dust grain size distribution or gas-to-dust mass ratio. Radiative transfer calculations using 2-Dust indicate that a mass-loss event occurred5700 yr ago with a rate of ð1:9 0:1Þ 104 M yr1, creating a dust torus that currently has a V 0:22 in the equatorial plane and a dust mass of ð2:5 0:1Þ 103 M. Using published values for the gas mass, we nd a gas-to-dust mass ratio of 840, which is 4 times higher than current estimates for the interstellar medium. In addition to