research

Maximum Principle and Its Application for the Time-Fractional Diffusion Equations

Abstract

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversaryIn the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative, the Caputo fractional derivative is shown to possess a suitable generalization of the extremum principle well-known for ordinary derivative. As an application, the maximum principle is used to get some a priori estimates for solutions of initial-boundary-value problems for the generalized time-fractional diffusion equations and then to prove uniqueness of their solutions

    Similar works