Modeling the behavior of FRP-confined concrete using dynamic harmony search algorithm

Abstract

The accurate prediction of ultimate conditions for fiber reinforced polymer (FRP)-confined concrete is essential for the reliable structural analysis and design of resulting structural members. Nonlinear mathematical models can be used for accurate calibration of strength and strain enhancement ratios of FRP-confined concrete. In this paper, a new procedure is proposed to calibrate the nonlinear mathematical functions, which involved the use of a dynamic harmony search (DHS) algorithm. The harmony memory is dynamically adjusted based on a novel pitch generation scheme using a dynamic bandwidth and random number with normal standard distribution in DHS. A new design-oriented confinement model is proposed based on three influential factors of FRP area ratio (ρa), lateral confinement stiffness ratio (ρE), and strain ratio (ρε). Five nonlinear mathematical design-oriented models are regressed on approximately 1000 axial compression tests of FRP-confined concrete in circular sections based on the proposed DHS algorithm. The proposed models for the prediction of the ultimate axial stress and strain of FRP-confined concrete are compared with the existing models. It has been shown that the DHS algorithm offers the best performance in terms of both accuracy and fast convergence rate in comparison with the other modified versions of harmony search algorithms for optimization problems. The proposed design-oriented model provides improved accuracy over the existing models.Behrooz Keshtegar, Togay Ozbakkaloglu, Aliakbar Gholampou

    Similar works