Transcriptional Dynamics of the Eukaryotic Cell

Abstract

Gene regulatory networks are dynamic and continuously remodelled in response to internal and external stimuli. To understand how these networks alter cellular phenotype in response towards specific challenges, my first project sought to develop a methodology to explore how the strength of genetic interactions changes according to environmental context. Defined as sensitivity-based epistasis, the results obtained using this methodology were compared to those generated under the conventional fitness-based approach. By integrating this information with gene expression profiles and physical interaction datasets, we demonstrate that sensitivity-based epistasis specifically highlights genetic interactions with a dynamic component. Having investigated how an external stimulus regulates network dynamics, we next sought to understand of how genome positioning impacts transcription kinetics. This feat was accomplished by cloning two gene-reporter constructs, representing contrasting promoter architectures, across 128 loci along chromosome III in S.Cerevisiae. By comparing expression and noise measurements for promoters with “covered” and “open” chromatin structures against a stochastic model for eukaryotic gene expression, we demonstrate that while promoter structure regulates burst frequency (the rate of promoter activation), positional effects in turn appear to primarily modulate burst size (the number of mRNA produced per gene activation event). By integrating these datasets with information describing global chromatin structure, we suggest that the acetylation state of chromatin regulates burst size across the genome. Interestingly, this hypothesis is further supported by nicotinamide-mediated inhibition of Sir2 which would appear to modulate burst size globally across the genome

    Similar works

    Full text

    thumbnail-image

    Available Versions