research

Direct Observation of Self-Assembled Chain-Like Water Structures in a Nanoscopic Water Meniscus

Abstract

Sawtooth-like oscillatory forces generated by water molecules confined between two oxidized silicon surfaces were observed using a cantilever-based optical interfacial force microscope when the two surfaces approached each other in ambient environments. The humidity-dependent oscillatory amplitude and periodicity were 3-12 nN and 3-4 water diameters, respectively. Half of each period was matched with a freely jointed chain model, possibly suggesting that the confined water behaved like a bundle of water chains. The analysis also indicated that water molecules self-assembled to form chain-like structures in a nanoscopic meniscus between two hydrophilic surfaces in air. From the friction force data measured simultaneously, the viscosity of the chain-like water was estimated to be between 108 and 1010 times greater than that of bulk water. The suggested chain-like structure resolves many unexplained properties of confined water at the nanometer scale, thus dramatically improving the understanding of a variety of water systems in nature

    Similar works