Molecular mechanism of the ribosome recycling factor ABCE1

Abstract

Protein biosynthesis is a conserved process, essential for life. Proteins are assembled from single amino acids according to their genetic blueprint in the form of a messenger ribonucleic acid (mRNA). Peptide bond formation is catalyzed by ancient ribonucleic acid (RNA) residues within the supramolecular ribosomal complex, which is organized in two dynamic subunits (Ramakrishnan, 2014). Each subunit comprises large ribosomal RNA (rRNA) molecules and several dozens of peripheral proteins. mRNA translation has been divided into three phases, namely translation initiation, elongation and termination in biochemistry textbooks. During initiation, the ribosomal subunits assemble into a functional ribosome on an activated mRNA and acquire the first transfer RNA (tRNA), an adapter between the start codon on the mRNA and the N-terminal methionine of the protein (Hinnebusch and Lorsch, 2012). During elongation, the ribosome translocates along the mRNA exposing one codon after the other, and amino acids are delivered to the ribosome by the respective tRNAs, and attached to the nascent polypeptide chain. During termination, the polypeptide is released and the ribosome remains loaded with mRNA and tRNA at the end of the open reading frame for the translated gene (Hellen, 2018). Bacterial ribosomes are subsequently recycled by a specific ribosome recycling factor and the small ribosomal subunit is simultaneously consigned to initiation factors for a next round of translation – rendering bacterial translation as a cyclic process with an additional ribosome recycling phase. However, the process of ribosome recycling remained enigmatic in Eukarya and Archaea until the simultaneous discovery of the twin-ATPase ABCE1 as the major ribosome recycling factor. Strikingly, ABCE1 has initially been shown to participate in translation initiation (Nürenberg and Tampé, 2013). Thus, closing the translation cycle by revealing the detailed molecular mechanism of ABCE1 and its role for translation initiation are the two goals of this research. Beyond the plenitude of well-studied translational GTPases, ABCE1 is the only essential factor energized by ATP, delivering the energy for ribosome splitting via two nucleotide-binding sites. Here, I define how allosterically coupled ATP binding and hydrolysis events in ABCE1 empower ribosome recycling. ATP occlusion in the low-turnover control site II promotes formation of the pre-splitting complex and facilitates ATP engagement in the high-turnover site I, which in turn drives the structural re- organization required for ribosome splitting. ATP hydrolysis and ensuing release of ABCE1 from the small subunit terminate the post-splitting complex. Thus, ABCE1 runs through an allosterically coupled cycle of closure and opening at both sites consistent with a processive clamp model. This study delineates the inner mechanics of ABCE1 and reveals why various ABCE1 mutants lead to defects in cell homeostasis, growth, and differentiation (Nürenberg-Goloub et al., 2018). Additionally, a high-resolution cryo-electron microscopy (EM) structure of the archaeal post-splitting complex was obtained, revealing a central macromolecular assembly at the crossover of ribosome recycling and translation initiation. Conserved interactions between ABCE1 and the small ribosomal subunit resemble the eukaryotic complex (Heuer et al., 2017). The conformational state of ABCE1 at the post-splitting complex confirms the molecular mechanism of ribosome recycling uncovered in this study. Moving further along the reaction coordinate of cellular translation, I reconstitute the complete archaeal translation initiation pathway and show that essential archaeal initiation factors are recruited to the post-splitting complex by biochemical methods and cryo-EM structures at intermediate resolution. Thus, the archaeal translation cycle is closed, following its bacterial model and paving the way for a deeper understanding of protein biosynthesis

    Similar works