research

Efficient target-response interpolation for a graphic equalizer

Abstract

Proceedings of the 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, held in Shanghai (China) during 20-25 March 2016.A graphic equalizer is an adjustable filter in which the command gain of each frequency band is practically independent of the gains of other bands. Designing a graphic equalizer with a high precision requires evaluating a target response that interpolates the magnitude response at several frequency points between the command gains. Good accuracy has been previously achieved by using polynomial interpolation methods such as cubic Hermite or spline interpolation. However, these methods require large computational resources, which is a limitation in real-time applications. This paper proposes an efficient way of computing the target response without sacrificing the approximation accuracy. This new approach called Linear Interpolation with Constant Segments (LICS) reduces the computing time of the target response by 55% and has an intrinsic parallel structure. Performance of the LICS method is assessed on an ARM Cortex-A7 core, which is commonly used in embedded systems.This work was conducted in spring 2015 when the first author was a visiting postdoctoral researcher at Aalto University. This research has been partly funded by the TIN2014-53495-R and TIN2011-23283 projects of the Ministerio de Economía y Competitividad and FEDER

    Similar works