research

High speed induction motor and inverter drive for flywheel energy storage

Abstract

The use of flywheels to store energy is a technology which is centuries old. The confluence of several modern technologies has resulted in flywheels becoming a viable solution for the needs of the transportation, electric utility, and aerospace industries. This paper discusses a high-speed induction motor and its associated inverter drive which were developed for the Federal Railroad Administration’s “Advanced Locomotive Propulsion System.” The design of the induction motor provided several significant challenges. A megawatt rated, 12,000 rpm motor operating at a rotor surface velocity speed of 230 m/s required a unique mechanical configuration to withstand the centrifugal forces as well as an electromagnetic design, which produced a high efficiency at 200 Hz. Extending the design practices used in smaller motors would not achieve the goals required for a megawatt size machine. Similarly, the inverter was developed using a soft switching technique in order to meet the demands of high power output in a compact package. Application requirements, electrical and mechanical features of the motor, design strategy for the inverter, and test results are all presented in this paper.Center for Electromechanic

    Similar works