A common reverse engineering problem is to convert several hundred thousand points
collected from the surface of an object via a digitizing process, into a coherent geometric
model that is easily transferred to a CAD software such as a solid modeler for either design
improvement or manufacturing and analysis. These data are very dense and make data-set
manipulation difficult and tedious. Many commercial solutions exist but involve time
consuming interaction to go from points to surface meshes such as BSplines or NURBS (Non
Uniform Rational BSplines). Our approach differs from current industry practice in that we
produce a mesh with little or no interaction from the user. The user can produce degree 2 and
higher BSpline surfaces and can choose the degree and number ofsegments as parameters to
the system. The BSpline surface is both compact and curvature continuous. The former
property reduces the large storage overhead, and the later implies a smooth can be created
from noisy data. In addition, the nature ofthe BSpline allows one to easily and smoothly alter
the surface, making re-engineering extremely feasible. The BSpline surface is created using
the principle ofhigher orders least squares with smoothing functions at the edges. Both linear
and cylindrical data sets are handled using an automated parameterization method. Also,
because ofthe BSpline's continuous nature, a multiresolutional-triangulated mesh can quickly
be produced. This last fact means that an STL file is simple to generate. STL files can also be
easily used as input to the system.Mechanical Engineerin