research

Mathematic modeling of the diffusion transfer in the multilayer nano-oxide films (sample investigation of the technology of the basalt super-fine fiber manufacturing)

Abstract

Побудовано математичну модель дифузійного перенесення в неоднорідних багатошарових наноплівках оксидної структури на основі дослідження зразка, створеного за технологією виробництва базальтового супертонкого волокна (БСТВ). Досліджувані наноплівки можуть використовуватися як термо- і агресивнозахисні покриття робочих органів технологічного обладнання, що працюють у високоагресивних середовищах. Отримано просторово-розподілені концентраційні розподіли структурних складових компонентів наноплівок для різних технологічних зрізів та часових тривалостей формування технологічного мультишару наноплівки.Development of modern technologies that integrate a miniaturized physical systems has stimulated a large number of papers on the study of the kinetics of masstransfer processes in multilayer nanofilms that are used in resource-saving technologies. Alloys of iron-chromium systems are used as a structural material in atomic power engineering in the production of mineral fibers. Oxides, including multi-layer ones, are widely used in the semiconductor technology. The chemical composition of oxides is determined by such components as Cr, Al, Si, rare-earth metals. If Al content is increased to 3%, the heat resistance of the alloy dramatically increases, since the formation of the external aluminum oxide prevents the penetration of oxygen into the inner layers. Determination of diffusion characteristics allows to correct the chemical composition of alloys and predict the operating life of their operation. The mathematical model of diffusion transfer in heterogeneous environments that describes the process of forming thin oxide nano films multilayers, which are used as termo- and aggressive-protective coverings of processing equipment operating members in highly corrosive environments, has been constructed. Spatially distributed concentration distributions of nanofilm structural components (aluminium, silicon) for various technological shears of oxide nanofilm and time durations of forming the technological nanofilm multilayer have been obtained in the result of modeling. The results can be used to encrease the effectiveness of experimental researches of transfer in multicomponental polycompositional and in researching the properties of new nanomaterials

    Similar works