research

Mathematical model for research of technical characteristics of integrated angular velocity microsensor

Abstract

Запропоновано математичну модель для дослідження технічних характеристик інтегрального мікросенсора кутової швидкості, проведено моделювання впливу параметрів його конструкції та матеріалів її виготовлення на технічні характеристики мікросенсора, такі, як частоти робочих і вимірювальних коливань чутливого елемента мікросенсора і його чутливість. На основі змодельованих залежностей резонансних частот від конструктивних параметрів мікросенсора побудовано скінченноелементну модель його конструкції в САПР ANSYS і проведено моделювання її поведінки.In the paper, the mathematical model for research of technical characteristics of the integrated angular velocity microsensor has been proposed. The model of the microsensor is shown as the simplified model “sensing element - damper”. By using the proposed mathematical model, the research of influence of construction parameters and fabrication materials of the integrated angular velocity microsensor on its technical characteristics, such as drive and sense oscillations of the sensing element of the microsensor and its sensitivity, is performed. The relationship between the normalized sensitivity of the microsensor Sdn and the ratio of (ωx/ωy) for different quality Qy values is simulated and graphically presented. Simulation of the dependency of drive and sense frequencies of the oscillating movement of the sensitive element on the constructive parameters of the spring element, such as its length, width and thickness, for such materials as SiC, Si, SiO2, Si3N4, Ge, SiGe is performed and graphically depicted. It has been researched that the resonant frequency decreases as the length of the spring element increases; resonant frequency increases as the width of the spring element increases; resonant frequency increases as the thickness of the spring element increases; driving mode frequency is more sensitive to the length and width of the spring element and less sensitive to its thickness; the sensing mode frequency is more sensitive to the length and thickness of the spring element and less sensitive to its width. On the base of the performed simulation of the dependency of the resonance frequencies on the constructive parameters of the integrated angular velocity microsensor, the finite element model of its construction in ANSYS is created and the simulation of its behavior is performed. In modal analysis of ANSYS model of the integrated angular velocity sensor, its mode shapes and frequencies are obtained. The obtained results can be further used for creation of VHDL-AMS, SUGAR models for MEMS computer-aided design subsystem

    Similar works