research

Communication: theoretical exploration of Au+H2, D2, and HD reactive collisions

Abstract

The following article appeared in Journal of Chemical Physic 135.9 (2011): 091102 and may be found at http://scitation.aip.org/content/aip/journal/jcp/135/9/10.1063/1.3635772A quasi-classical study of the endoergic Au(1S)+ H2(X1Σg+) → AuHAuH+(2Σ+)+H(2S) reaction, and isotopic variants, is performed to compare with recent experimental results [F. Li, C. S. Hinton, M. Citir, F. Liu, and P. B. Armentrout, J. Chem. Phys. 134, 024310 (2011)]. For this purpose, a new global potential energy surface has been developed based on multi-reference configuration interaction ab initio calculations. The quasi-classical trajectory results show a very good agreement with the experiments, showing the same trends for the different isotopic variants of the hydrogen molecule. It is also found that the total dissociation into three fragments, Au+H+H, is the dominant reaction channel for energies above the H2 dissociation energy. This results from a well in the entrance channel of the potential energy surface, which enhances the probability of H-Au-H insertionA.D.-U. acknowledges a JAE fellowship supported by CSIC. This work is supported by Comunidad Autónoma de Madrid, Grant No. S2009/MAT/1467, and by Ministerio de Ciencia e Innovación, Grant Nos. CSD2009-00038 and FIS2010-18132. The calculations have been performed at CESGA and IFF computing centers. P.B.A. thanks the National Science Foundation for suppor

    Similar works

    Full text

    thumbnail-image

    Available Versions