Eeotogists increasingly recognize the need to understand how landscapes ami food webs interact. Reservoir ecosystems are heavily subsidized by nutrients and detritus from surrounding watersheds, and ofren contain abundant populations of gizzard shad, an omnivorous ftsh that consumes plankton and detritus. Gizzard shad link terrestrial landscapes ami pelagic reservoir food webs by consuming detritus, translocating nutrients from sedimctn detritus to the water column, and consuming zooplaukton. The abundance of gizzard shad increases with watershed agricuhuralization, most likely through n variety oj mechanisms npeniting on ttuvat and adult life stages. Gizzard shad have myriad effects on reservoirs, including impacts on nutrients, phytoplankton, zooplankton, and fish, and many of their effects vary with ecosystem productivity (i.e., watershed land use). Interactive feedbacks among watersheds, gizzard shad populations, and reservoir food webs operate to maintain dominance of gizzard shad in highly productive systems. Thus, effective stewardship of reservoir ecosystems must incorporate both watershed and food-web perspective