Real power loss reduction by Rock Dove optimization and Fuligo Septica optimization algorithms

Abstract

This paper aims to use the Rock Dove (RD) optimization algorithm and the Fuligo Septica optimization (FSO) algorithm for power loss reduction. Rock Dove towards a particular place is based on the familiar (sight) objects on the traveling directions. In the formulation of the RD algorithm, atlas and range operator, and familiar sight operators have been defined and modeled. Every generation number of Rock Dove is reduced to half in the familiar sight operator and Rock Dove segment, which hold the low fitness value that occupying the lower half of the generation will be discarded. Because it is implicit that individualโ€™s Rock Dove is unknown with familiar sights and very far from the destination place, a few Rock Doves will be at the center of the iteration. Each Rock Dove can fly towards the final target place. Then in this work, the FSO algorithm is designed for real power loss reduction. The natural vacillation mode of Fuligo Septica has been imitated to develop the algorithm. Fuligo Septica connects the food through swinging action and possesses exploration and exploitation capabilities. Fuligo Septica naturally lives in chilly and moist conditions. Mainly the organic matter in the Fuligo Septica will search for the food and enzymes formed will digest the food. In the movement of Fuligo Septica it will spread like a venous network, and cytoplasm will flow inside the Fuligo Septica in all ends. THE proposed RD optimization algorithm and FSO algorithm have been tested in IEEE 14, 30, 57, 118 and 300 bus test systems and simulation results show the projected RD and FSO algorithm reduced the real power loss

    Similar works