Formation of the Microcrystalline Structure in LiNbO3 Thin Films by Pulsed Light Annealing

Abstract

LiNbO3 thin films with a thickness of 200 nm were deposited onto Al2O3 substrate by RF-magnetron sputtering technique without intentional substrate heating. The results demonstrate that post-growth infrared pulsed light annealing of the amorphous LiNbO3 films leads to the formation of two phases, LiNbO3 and LiNb3O8. After annealing at temperatures of 700 to 800 °C, the percentage of the nonferroelectric phase LiNb3O8 was minimal. The surface composition of the films annealed at different temperatures was examined by X-ray photoelectron spectroscopy. Piezoresponse force microscopy was used to study both the vertical and the lateral polarization and to visualize the piezoelectric inactivity of LiNb3O8 grains. A comparison of the results of PFM and XPS measurements revealed that there is a correlation between the fraction of the piezoelectric phase and the film composition: At an annealing temperature higher than 850 °C, the atomic ratio of lithium to niobium decreases compared to the initial value along with a decrease of the fraction of the piezoelectric phase

    Similar works