research

Ethanol Sensing Performances of Zinc-doped Copper Oxide Nano-crystallite Layers

Abstract

The synthesis via chemical solutions (aqueous) (SCS) wet route is a low-temperature and cost-effective growth technique of high crystalline quality oxide semiconductors films. Here we report on morphology, chemical composition, structure and ethanol sensing performances of a device prototype based on zincdoped copper oxide nanocrystallite layer. By thermal annealing in electrical furnace for 30 min at temperatures higher than 550 ˚C, as-deposited zinc doped Cu2O samples are converted to tenorite, ZnxCu1-xOy, (x=1.3wt%) that demonstrate higher ethanol response than sensor structures based on samples treated at 450 ˚C. In case of the specimens after post-growth treatment at 650 ˚C was found an ethanol gas response of about 79 % and 91 % to concentrations of 100 ppm and 500 ppm, respectively, at operating temperature of 400 ˚C in air

    Similar works