Commissioning and implementing a PROFIBUS network in the Universal Water System

Abstract

The Universal Water System (UWS) was built for instrumentation and control engineering students to design, implement and test different control schemes. The system has been primarily developed and designed by fourth year undergraduate and master’s students with the help of on-site technicians and electricians for installation of high voltage wiring, hardware equipment and IT related tasks. As the UWS is a learning tool that provides hands on experience with an industrial grade environment and equipment, improvement and maintenance of its functionality is a vital part of the on-going thesis projects. The main objectives of this work are split into three major segments. The first was commissioning the UWS, which consisted of updating the system’s software, replacing faulty equipment and ensuring appropriate functionality of the plant’s hardware. Two PROFIBUS Decentralised Peripherals (DP) flowmeters had been purchased to replace two faulty positive displacement flowmeters in the system. Hence the second objective was implement a PROFIBUS DP communication network for the new devices. The last objective was to design, implement and test more advanced control schemes through Open Platform Communication for the newly upgraded plant. With the project now complete, the UWS is operational with a fully functioning PROFIBUS DP communication network. The server computer’s operating system has been upgraded, while the Compact RIO’s firmware and the programming software has been updated to the latest version. Faulty equipment has been replaced and commissioned. Namely, two replacement flowmeters and an electric flow valve. A PROFIBUS DP network has been implemented to communicate with the two replacement flowmeters. An unexpected technical difficultly led to 5 variable speed drives being added to the PROFIBUS DP network. Additionally, the compact RIO’s code has been redesigned to improve efficiency, provide cyber-security, and to reduce the complexity of the client program. Due to unforeseen circumstances and time constraints the time taken to commission the plant and implement PROFIBUS was far greater than expected; two of the three project objectives were completed, pushing the advanced control schemes and Open Platform Communication to future work. Overall, the main accomplishment of this thesis besides the project objectives, is that the system has been updated, refitted and ready for operation for the next thesis student; so they do not run into the tedious and painful issues found during this project

    Similar works