CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Cholinergic basal forebrain volumes predict gait decline in Parkinson's disease
Authors
L. Alcock
D.J. Burn
+13 more
C.E. Craig
G.W. Duncan
B. Galna
T.K. Khoo
R.A. Lawson
S. Lord
R. Morris
J.T. O'Brien
N.J. Ray
L. Rochester
J.‐P. Taylor
J. Wilson
A.J. Yarnall
Publication date
1 January 2021
Publisher
Wiley Online Library
Abstract
Background Gait disturbance is an early, disabling feature of Parkinson's disease (PD) that is typically refractory to dopaminergic medication. The cortical cholinergic system, originating in the nucleus basalis of Meynert of the basal forebrain, has been implicated. However, it is not known if degeneration in this region relates to a worsening of disease-specific gait impairment. Objective To evaluate associations between sub-regional cholinergic basal forebrain volumes and longitudinal progression of gait impairment in PD. Methods 99 PD participants and 47 control participants completed gait assessments via an instrumented walkway during 2 minutes of continuous walking, at baseline and for up to 3 years, from which 16 spatiotemporal characteristics were derived. Sub-regional cholinergic basal forebrain volumes were measured at baseline via MRI and a regional map derived from post-mortem histology. Univariate analyses evaluated cross-sectional associations between sub-regional volumes and gait. Linear mixed-effects models assessed whether volumes predicted longitudinal gait changes. Results There were no cross-sectional, age-independent relationships between sub-regional volumes and gait. However, nucleus basalis of Meynert volumes predicted longitudinal gait changes unique to PD. Specifically, smaller nucleus basalis of Meynert volume predicted increasing step time variability (P = 0.019) and shortening swing time (P = 0.015); smaller posterior nucleus portions predicted shortening step length (P = 0.007) and increasing step time variability (P = 0.041). Conclusions This is the first study to demonstrate that degeneration of the cortical cholinergic system predicts longitudinal progression of gait impairments in PD. Measures of this degeneration may therefore provide a novel biomarker for identifying future mobility loss and falls. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:researchrepository.murdoch...
Last time updated on 18/12/2021