thesis

MICROPARTICLE SAMPLING AND SEAPARATIONENABLED BY DROPLET MICROFLUIDICS

Abstract

This work reports design, device fabrication, modeling and experimental results on newsampling and separation principles in which liquid is transported in a droplet form on a plannerhydrophobic surface with no moving parts. The presented particle sampler and separatorconstitute core units for the handheld lab-on-a-chip-based airborne particle monitoring system.For the airborne particle sampling, a novel method is developed by which the particles onthe solid surface are swept and sampled by electrowetting-actuated moving droplets. Theoreticalanalysis and experimental works along with microfabricated testing devices are carried out toinvestigate the underlying physics and to optimize the sampling conditions. The samplingconcepts are examined and proved on a solid surface and perforated filter membrane showinghigh sampling efficiencies.For the particle separation, a new separation scheme is developed in which the mixedparticles are separated within a mother droplet by traveling-wave dielectrophoresis (tw-DEP).Using the subsequent operation of droplet splitting by way of electrowetting, the separatedparticles can be isolated into each split droplet according to the DEP properties of the particles.This in-droplet separation is examined with many combinations of particles in microfabricateddevices. By investigating the particle behavior as function of the frequency of the traveling waveDEP signal, the separation efficiencies are optimized.The above microfluidic units constitute key components for upstream particle sampling anddownstream sample processing in the lab on a chip system, providing the following advantages:extremely small amount use of samples/reagents (2) no external pressure source required forfluidic operations, (3) simple design and fabrication since no mechanical moving structure

    Similar works