CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Human Neutrophil Elastase Degrades SPLUNC1 and Impairs Airway Epithelial Defense against Bacteria
Authors
RP Bowler
HW Chu
+4 more
D Jiang
C Schnell
SE Wenzel
Q Wu
Publication date
1 January 2013
Publisher
'Public Library of Science (PLoS)'
Doi
View
on
PubMed
Abstract
Background:Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are a significant cause of mortality of COPD patients, and pose a huge burden on healthcare. One of the major causes of AECOPD is airway bacterial (e.g. nontypeable Haemophilus influenzae [NTHi]) infection. However, the mechanisms underlying bacterial infections during AECOPD remain poorly understood. As neutrophilic inflammation including increased release of human neutrophil elastase (HNE) is a salient feature of AECOPD, we hypothesized that HNE impairs airway epithelial defense against NTHi by degrading airway epithelial host defense proteins such as short palate, lung, and nasal epithelium clone 1 (SPLUNC1).Methodology/Main Results:Recombinant human SPLUNC1 protein was incubated with HNE to confirm SPLUNC1 degradation by HNE. To determine if HNE-mediated impairment of host defense against NTHi was SPLUNC1-dependent, SPLUNC1 protein was added to HNE-treated primary normal human airway epithelial cells. The in vivo function of SPLUNC1 in NTHi defense was investigated by infecting SPLUNC1 knockout and wild-type mice intranasally with NTHi. We found that: (1) HNE directly increased NTHi load in human airway epithelial cells; (2) HNE degraded human SPLUNC1 protein; (3) Recombinant SPLUNC1 protein reduced NTHi levels in HNE-treated human airway epithelial cells; (4) NTHi levels in lungs of SPLUNC1 knockout mice were increased compared to wild-type mice; and (5) SPLUNC1 was reduced in lungs of COPD patients.Conclusions:Our findings suggest that SPLUNC1 degradation by neutrophil elastase may increase airway susceptibility to bacterial infections. SPLUNC1 therapy likely attenuates bacterial infections during AECOPD. © 2013 Jiang et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:192...
Last time updated on 15/12/2016
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:192...
Last time updated on 23/11/2016
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:40e7b854e...
Last time updated on 13/10/2017
D-Scholarship@Pitt
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:192...
Last time updated on 19/07/2013
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.pon...
Last time updated on 05/06/2019
CiteSeerX
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:CiteSeerX.psu:10.1.1.774.5...
Last time updated on 30/10/2017