Iterator-based temporal logic task planning

Abstract

Temporal logic task planning for robotic systemssuffers from state explosion when specifications involve largenumbers of discrete locations. We provide a novel approach,particularly suited for tasks specifications with universallyquantified locations, that has constant time with respect tothenumber of locations, enabling synthesis of plans for an arbitrarynumber of them. We propose a hybrid control framework thatuses an iterator to manage the discretised workspace hidingitfrom a plan enacted by a discrete event controller. A downsideof our approach is that it incurs in increased overhead whenexecuting a synthesised plan. We demonstrate that the overheadis reasonable for missions of a fixed-wing Unmanned AerialVehicle in simulated and real scenarios for up to700 000locations

    Similar works