Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors

Abstract

Early diagnostics of diseases performed with minimal money and time consumption has become achievable due to recent advances in development of biosensors. These devices use biorecognition elements for selective interaction with an analyte and signal readout is obtained via different types of transducers. Operational characteristics of biosensors have been reported to improve substantially, when a diverse range of nanomaterials was employed. This review presents construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, which is currently intensively studied nanomaterial. The most attractive directions of graphene applications in biosensor preparation are discussed here including novel detection and amplification schemes exploiting graphene’s unique electrochemical, physical and chemical properties. The future of graphene-based biosensors is most likely bright, but there is still a lot of work to do to fulfill high expectations.Slovak scientific grant agency VEGA 2/0162/14 and from the Slovak research and development agency APVV 0282-11 is acknowledged. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 311532 and this work has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 317420. This work was funded by the National Priorities Research Program (Qatar National Research Fund), NPRP 6-381-1-078

    Similar works