On multipath link characterization and adaptation for device-free human detection

Abstract

Abstract—Wireless-based device-free human sensing has raised increasing research interest and stimulated a range of novel location-based services and human-computer interaction appli-cations for recreation, asset security and elderly care. A primary functionality of these applications is to first detect the presence of humans before extracting higher-level contexts such as physical coordinates, body gestures, or even daily activities. In the presence of dense multipath propagation, however, it is non-trivial to even reliably identify the presence of humans. The multipath effect can invalidate simplified propagation models and distort received signal signatures, thus deteriorating detection rates and shrinking detection range. In this paper, we characterize the impact of human presence on wireless signals via ray-bouncing models, and propose a measurable metric on commodity WiFi infrastructure as a proxy for detection sensitivity. To achieve higher detection rate and wider sensing coverage in multipath-dense indoor scenarios, we design a lightweight subcarrier and path configuration scheme harnessing frequency diversity and spatial diversity. We prototype our scheme with standard WiFi devices. Evaluations conducted in two typical office environments demonstrate a detection rate of 92.0 % with a false positive of 4.5%, and almost 1x gain in detection range given a minimal detection rate of 90%. I

    Similar works