Abstract

Granular flows are omnipresent in nature and industrial processes, but their rheological properties such as apparent friction and packing fraction are still elusive when inertial, cohesive and viscous interactions occur between particles in addition to frictional and elastic forces. Here we report on extensive particle dynamics simulations of such complex flows for a model granular system composed of perfectly rigid particles. We show that, when the apparent friction and packing fraction are normalized by their cohesion-dependent quasistatic values, they are governed by a single dimensionless number that, by virtue of stress additivity, accounts for all interactions. We also find that this dimensionless parameter, as a generalized inertial number, describes the texture variables such as the bond network connectivity and anisotropy. Encompassing various stress sources, this unified framework considerably simplifies and extends the modeling scope for granular dynamics, with potential applications to powder technology and natural flows. Granular materials are abundant in nature, but we haven't fully understood their rheological properties as complex interactions between particles are involved. Here, Vo et al. show that granular flows can be described by a generalized dimensionless number based on stress additivity

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 13/04/2020
    Last time updated on 17/06/2021