CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl solution
Authors
Abdullah A.M.
Afifi M.
+5 more
Bahgat Radwan A.
Fayyad E.M.
Heakal F.E.-T.
Shibl M.F.
Sliem M.H.
Publication date
1 January 2019
Publisher
'Springer Science and Business Media LLC'
Doi
Cite
Abstract
The impact of AEO7 surfactant on the corrosion inhibition of carbon steel (C-steel) in 0.5 M HCl solution at temperatures between 20 °C and 50 °C was elucidated using weight loss and different electrochemical techniques. The kinetics and thermodynamic parameters of the corrosion and inhibition processes were reported. The corrosion inhibition efficiency (IE%) improved as the concentration of AEO7 increased. In addition, a synergistic effect was observed when a concentration of 1 × 10 −3 mol L −1 or higher of potassium iodide (KI) was added to 40 µmol L −1 of the AEO7 inhibitor where the corrosion IE% increased from 87.4% to 99.2%. Also, it was found that the adsorption of AEO7 surfactant on C-steel surface followed the Freundlich isotherm. Furthermore, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements indicated that AEO7 was physically adsorbed on the steel surface. The surface topography was examined using an optical profilometer, an atomic force microscope (AFM), and a scanning electron-microscope (SEM) coupled with an energy dispersion X-ray (EDX) unit. Quantum chemical calculations based on the density functional theory were performed to understand the relationship between the corrosion IE% and the molecular structure of the AEO7 molecule. © 2019, The Author(s).This publication was supported by Qatar University Internal Grant N° GCC-2017-012. The findings achieved herein are solely the responsibility of the authors. The authors gratefully thank the Center for Advanced Materials at Qatar University and the Chemistry Department at Cairo University for their support. The permanent address of Dr. Mohamed F. Shibl is Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.Scopu
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Qatar University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:qspace.qu.edu.qa:10576/136...
Last time updated on 07/04/2020