research

Impact of tissue microstructure on a model of cardiac electromechanics based on MRI data

Abstract

Cardiac motion is a vital process as it sustains the pumping of blood in the body. For this reason motion abnormalities are often associated with severe cardiac pathologies. Clinical imaging techniques, such as MRI, are powerful in assessing motion abnormalities but their connection with pathology often remains unknown.

Computational models of cardiac motion, integrating imaging data, would thus be of great help in linking tissue structure (i.e. cells organisation into fibres and sheets) to motion abnormalities and to pathology. Current models, though, are not able yet to correctly predict realistic cardiac motion in the healthy or diseased heart.

Our hypothesis is that a more realistic description of tissue structure within an electromechanical model of the heart, with structural information extracted from data rather than mathematically defined, and a more careful definition of tissue material properties, would better represent the high heterogeneity of cardiac tissue, thus improving the predictive power of the model

    Similar works