research

Counting absolute number of molecules using unique molecular identifiers

Abstract

Advances in molecular biology have made it easy to identify different DNA or RNA species and to copy them. Identification of nucleic acid species can be accomplished by reading the DNA sequence; currently millions of molecules can be sequenced in a single day using massively parallel sequencing. Efficient copying of DNA-molecules of arbitrary sequence was made possible by molecular cloning, and the polymerase chain reaction. Differences in the relative abundance of a large number of different sequences between two or more samples can in turn be measured using microarray hybridization and/or tag sequencing. However, determining the relative abundance of two different species and/or the absolute number of molecules present in a single sample has proven much more challenging. This is because it is hard to detect individual molecules without copying them, and even harder to make defined number of copies of molecules. We show here that this limitation can be overcome by using unique molecular identifiers (umis), which make each molecule in the sample distinct

    Similar works