Postpartum depression (PPD) affects up to 1 in 8 women. The early postpartum period is characterized by a downward physiological shift from relatively elevated levels of sex steroids during pregnancy to diminished levels after parturition. Sex steroids influence functional brain connectivity in healthy non-puerperal subjects. This study tests the hypothesis that PPD is associated with attenuation of resting-state functional connectivity (rs-fc) within corticolimbic regions implicated in depression and alterations in neuroactive steroid concentrations as compared to healthy postpartum women. Subjects (n = 32) were prospectively evaluated during pregnancy and in the postpartum with repeated plasma neuroactive steroid measurements and mood and psychosocial assessments. Healthy comparison subjects (HCS) and medication-free subjects with unipolar PPD (PPD) were examined using functional magnetic resonance imaging (fMRI) within 9 weeks of delivery. We performed rs-fc analysis with seeds placed in the anterior cingulate cortex (ACC), and bilateral amygdala (AMYG), hippocampi (HIPP) and dorsolateral prefrontal cortices (DLPFCs). Postpartum rs-fc and perinatal neuroactive steroid plasma concentrations, quantified by liquid chromatography/mass spectrometry, were compared between groups. PPD subjects showed attenuation of connectivity for each of the tested regions (i.e. ACC, AMYG, HIPP and DLPFC) and between corticocortical and corticolimbic regions vs. HCS. Perinatal concentrations of pregnanolone, allopregnanolone and pregnenolone were not different between groups. This is the first report of a disruption in the rs-fc patterns in medication-free subjects with PPD. This disruption may contribute to the development of PPD, at a time of falling neuroactive steroid concentrations