There exist few databases that enable cross-reference among various research fields related to bioenergy. Cross-reference is highly desired among bioinformatics databases related to environment, energy, and agriculture for better mutual cooperation. By uniting Semantic Graph, we can economically construct a distributed database, regardless of the size of research laboratories and research endeavors.

Our purpose is to design and develop a workflow based on RDF (Resource Description Framework) that generates Semantic Graph for a set of technical terms extracted from documents of various formats, such as PDF, HTML, and plain text. Our attempt is to generate Semantics Graph as a result of text mining including morphological analysis and syntax analysis.

We have developed a prototype of workflow program named "RDF Curator". By using this system, various types of documents can be automatically converted into RDF. "RDF Curator" is composed of general tools and libraries so that no special environment is needed. Hence, “RDF Curator” can be used on many platforms, such as MacOSX, Linux, and Windows (Cygwin). We expect that our system can assist human curators in constructing Semantic Graph. Although fast and high throughput, the accuracy of the present version of "RDF Curator" is lower than that of human curators. As a future task, we have to improve the accuracy of the workflow. In addition, we also plan to apply our system to analysis of network similarity