Epizootic shell disease (ESD) of the American lobster Homarus americanus H. Milne Edwards, 1837 is a disease of the carapace that presents grossly as large, melanized, irregularly shaped lesions, making the lobsters virtually unmarketable because of their grotesque appearance. We analyzed the bacterial communities present in the hemolymph of lobsters with and without ESD using nested-PCR of the 16S rRNA genes followed by denaturing gradient gel electrophoresis. All lobsters tested (n = 42) had bacterial communities in their hemolymph, and the community profiles were highly similar regardless of the sampling location or disease state. A number of bacteria were detected in a high proportion of samples and from numerous locations, including a Sediminibacterium sp. closely related to a symbiont of Tetraponera ants (38/42) and a Ralstonia sp. (27/42). Other bacteria commonly encountered included various Bacteroidetes, Pelomonas aquatica, and a Novosphingobium sp. One bacterium, a different Sediminibacterium sp., was detected in 20% of diseased animals (n = 29), but not in the lobsters without signs of ESD (n = 13). The bacteria in hemolymph were not the same as those known to be present in lesion communities except for the detection of a Thalassobius sp. in 1 individual. This work demonstrates that hemolymph bacteremia and the particular bacterial species present do not correlate with the incidence of ESD, providing further evidence that microbiologically, ESD is a strictly cuticular disease. Furthermore, the high incidence of the same species of bacteria in hemolymph of lobsters may indicate that they have a positive role in lobster fitness, rather than in disease, and further investigation of the role of bacteria in lobster hemolymph is required