research

Endothelin-Induced Sarcoplasmic Reticulum Calcium Depletion Waves in Vascular Smooth Muscle Cells

Abstract

Agonist-stimulated waves of elevated cytoplasmic Ca2+ concentration ([Ca2+]i ) regulate blood vessel tone and vasomotion in vascular smooth muscle. Previous studies employing cytoplasmic Ca2+ indicators revealed that these Ca2+ waves were generated by a combination of inositol 1,4,5-trisphosphate (IP3) and Ca2+ induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR); although, some of the mechanistic details remain uncertain. However, these findings were derived indirectly from observing agonist-induced [Ca2+]i fluctuations in the cytoplasm.
Here, for the first time, we have recorded Endothelin-1 (ET-1) induced waves of Ca2+ depletion from the SR lumen in vascular smooth muscle cells (VSMCs) using a calsequestrin-targeted Ca2+ indicator. Our findings show that these waves: (1) are due to regenerative CICR by the receptors for IP3 (IP3R), (2) have a marked latency period, (3) are characterized by a transient increase in SR Ca2+ ([Ca2+]SR ) both at the point of origin and at the wave front, (4) proceed with diminishing velocity, and (5) are arrested by the nuclear envelope. Our quantitative model indicates that the gradual decrease in the velocity of the SR depletion wave, in the absence of external Ca2+, results from continuity of the SR luminal network

    Similar works