research

Global Network Alignment

Abstract

Motivation: High-throughput methods for detecting molecular interactions have lead to a plethora of biological network data with much more yet to come, stimulating the development of techniques for biological network alignment. Analogous to sequence alignment, efficient and reliable network alignment methods will improve our understanding of biological systems. Network alignment is computationally hard. Hence, devising efficient network alignment heuristics is currently one of the foremost challenges in computational biology. 

Results: We present a superior heuristic network alignment algorithm, called Matching-based GRAph ALigner (M-GRAAL), which can process and integrate any number and type of similarity measures between network nodes (e.g., proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity, and structural similarity. This is efficient in resolving ties in similarity measures and in finding a combination of similarity measures yielding the largest biologically sound alignments. When used to align protein-protein interaction (PPI) networks of various species, M-GRAAL exposes the largest known functional and contiguous regions of network similarity. Hence, we use M-GRAAL’s alignments to predict functions of un-annotated proteins in yeast, human, and bacteria _C. jejuni_ and _E. coli_. Furthermore, using M-GRAAL to compare PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship and our phylogenetic tree is the same as sequenced-based one

    Similar works