research

Detection of Metabolites by Proton Ex Vivo NMR, in Vivo MR Spectroscopy Peaks and Tissue Content Analysis: Biochemical-Magnetic Resonance Correlation: Preliminary Results

Abstract

*Aim*: Metabolite concentrations by in vivo magnetic resonance spectroscopy and ex vivo NMR spectroscopy were compared with excised normal human tissue relaxation times and tissue homogenate contents.

*Hypothesis*: Biochemical analysis combined with NMR and MR spectroscopy defines better tissue analysis.

*Materials and Methods*: Metabolites were measured using peak area, amplitude and molecular weights of metabolites in the reference solutions. In normal brain and heart autopsy, muscle and liver biopsy tissue ex vivo NMR peaks and spin-lattice (T1) and spin-spin (T2) relaxation times, were compared with diseased tissue NMR data in meningioma brain, myocardial infarct heart, duchene-muscular-dystrophy muscle and diffused-liver-injury liver after respective in vivo proton MR spectroscopy was done. NMR data was compared with tissue homogenate contents and serum levels of biochemical parameters.

*Results*: The quantitation of smaller NMR visible metabolites was feasible for both ex vivo NMR and in vivo MR spectroscopy. Ex vivo H-1 NMR and in vivo MRS metabolite characteristic peaks (disease/normal data represented as fold change), T1 and T2, and metabolites in tissue homogenate and serum indicated muscle fibrosis in DMD, cardiac energy depletion in MI heart, neuronal dysfunction in meningioma brain and carbohydrate-lipid metabolic crisis in DLI liver tissues.

*Conclusion*: This preliminary report highlights the biochemical-magnetic resonance correlation as basis of magnetic resonance spectroscopic imaging data interpretation of disease

    Similar works