research

The land surface water and energy budgets over the Tibetan Plateau

Abstract

Tibetan Plateau plays an important role in the Asian Monsoon and global general circulation system. Due to the lack of quantitative observations and complicated cold season processes in high elevation terrain, however, the land surface water and energy budgets are still unexplored over this special region. In this study, the water and energy balances are analyzed in detail based on recently released land surface “reanalysis” data produced by NASA Global Land Data Assimilation System by three different land models, which first ingest all available ground and satellite data into the data assimilation system over the Tibetan Plateau. The major land surface energy and water components in the annual variability are compared. The model and data assimilation skills and deficiencies are also discussed. The total heat fluxes in the transition from heat source to heat sink is observed at the west edge of the TP during winter. But, the area and intensity is far less than the previous hypothesized. The Budyko curve for hydrology indicates that the TP is a typical dry and arid climate where evaporation is mainly controlled by precipitation

    Similar works