research

In silico Protein Structural Modeling and Active binding site Evaluation of Streptococcus pneumoniae

Abstract

Structure function relation of glucose kinese in Streptococcus pneumoniae. However, a solved structure for _Streptococcus pneumoniae_ glucose kinese is not available at the protein data bank. Glucose kinase is a regulatory enzyme capable of adding phosphate group to glucose in the first step of streptomycin biosynthesis. The activity of glucose kinase was regulated by the Carbon Catabolite Repression system. So, we created a model of glucose kinese from _Streptococcus pnemoniae_ using the X-ray crystallography structure of glucose kinese enzymes from _Enterobacteria faecalis_ as template with Molsoft ICM v3.5 software. The model was validated using protein structure checking tools such as PROCHECK, WHAT IF: for reliability. The active site amino acid "Asp114" in the template is retained in _S. pneumoniae_ Glucose kinese model "Asp115". Solvent accessible surface area analysis of the glucose kinese model showed that known key residues playing important role in active site for ligand binding and metal ion binding are buried and hence not accessible to solvent. The information thus discussed provides insight to the molecular understanding of _Streptococcus pneumoniae_ in glucose kinase

    Similar works