thesis

On the physical refining of edible oils for obtaining high quality products

Abstract

Vegetable oils are important compounds of the human diet and they should be refined before consumption. Consumers demand for healthier products as well as stiff environmental legislation are forcing refining industries towards changes and improvement of processes. In this context, this thesis has as main objective to investigate/improve the physical refining of vegetable oils, emphasizing the bleaching step. As first step, a HPLC methodology for simultaneous quantification of carotenes and tocols was developed and validated, and lately, it was used by our research groups. Then, bleaching step of palm oil, nowadays the most consumed oil in the world, was studied under different aspects: (1) determining kinetics, equilibrium and thermodynamic parameters of adsorptive removal of carotenes and phosphorus onto acid activated bleaching earth; (2) influence of different procedures on final color of palm oil; (3) influence of bleaching earth kind on final color of palm oil. These studies were important for a better understanding of bleaching process of palm oil, and some conclusions were obtained: adsorptive removal of carotenes and phosphorus onto acid activated bleaching earth occurs by chemisorption and it is endothermic; new procedures in the bleaching step can improve final color of palm oil when using the same amount of bleaching earth and deodorization time; a hypothesis was proposed to explain how the kind of bleaching earth can interfere in the final color of palm oil. Further studies are still necessary to optimize bleaching step and the new procedures suggested. Later, physical deacidification was studied by computer simulation and experimental data from literature. It was compared two mathematical approaches: differential and flash distillations. This last one presented better results regarding acidity and neutral oil loss profiles. In this approach, it was considered the heat transfer equations. In this way, this thesis presents an advance in refining process towards high quality products and the use of less chemicals

    Similar works