research

Proposing a life cycle land use impact calculation methodology

Abstract

The Life Cycle Assessment (LCA) community is yet to come to a consensus on a methodology to incorporate land use in LCA. Earlier our research group presented a methodology based on the ecosystem exergy concept. The ecosystem exergy concept suggests that ecosystems develop towards more effective degradation of energy fluxes passing through the system. The concept is argued to be derivable from two axioms: the principles of (i) maximum exergy storage and the (ii) maximum exergy dissipation. In this paper we present a methodology to assess impacts of human induced land use occupation, in which we make a difference between functional and structural land use impacts. The methodology follows a dynamic multi-indicator approach looking at mid-point impacts on soil fertility, soil structure, biomass production, vegetation structure, on-site water balance and biodiversity. The impact scores are calculated as a relative difference with a reference system. We propose to calculate the impact by calculating the land quality change between the former and the actual land use relative to the quality of the potential natural vegetation. Impact scores are then aggregated, as endpoint impacts, in (i) structural land use impact (exergy storage capacity) and (ii) functional land use impact (exergy dissipation capacity). For aggregation of the relative mid-point impact scores no characterization factor is used. In order to fit this impact calculation in the LCA framework the end-point impact scores are multiplied by a LCA component, a component that enables us to report the impact per functional unit

    Similar works