research

Structural basis of the allosteric trigger of the Hsp70 chaperone proteins.

Abstract

This work solves a decades-old dilemma that stood in the way of understanding the allosteric mechanism of Hsp70 (heat shock 70 kDa) chaperone proteins. Hsp70s are central to protein folding, refolding, and trafficking in organisms ranging from Archae to Homo Sapiens, both at normal and at stressed cellular conditions. Hsp70s are comprised of two main domains: a 44 kDa N-terminal nucleotide-binding domain (NBD), and a 25 kDa substrate-binding domain (SBD) that harbors the substrate binding site. The nucleotide binding site in the NBD and the substrate binding site in the SBD are allosterically linked: ADP binding promotes substrate binding, while ATP binding promotes substrate release. It has long been a goal of structural biology to characterize the nature of the allosteric coupling in these proteins. However, even the most sophisticated X-ray crystallography studies of the isolated NBD could show no difference in overall conformation between the ATP and ADP state. Hence the dilemma: how is the state of the nucleotide communicated between NBD and SBD? The solution of the dilemma is especially interesting in light of the fact that Hsp70s are ancient proteins, and amongst the first allosteric proteins in nature.Here we report a solution NMR study of the NBD of the Hsp70 from Thermus thermophilus, in the APO, ADP and AMP-PNP states, where the latter is a non-hydrolysable ATP analogue. Using the modern NMR methods of residual dipolar coupling analysis, we discovered that the nucleotide binding cleft opens up by as much as 20 degrees between the AMP-PNP (closed) and ADP (open) state. We also discover that a surface cleft, hypothesized to be essential for the allosteric coupling between NBD and SBD, echoes these changes. Hence, the nature of the allosteric trigger and coupling for Hsp70 chaperones is revealed here for the first time, solving the dilemma

    Similar works