Recent studies in monkeys showed that when the direct cortico-motoneuronal connection was transected at mid-cervical segments, remaining, indirect cortico-motoneuronal pathways compensated for finger dexterity within one to three months. To elucidate the changes in dynamic properties of neural circuits during the recovery, we investigated the cortico-muscular and inter-muscular couplings of activities throughout the recovery course. Activities of antagonist muscle pairs showed co-activation during the second postoperative week, and oscillated coherently at frequencies of 30-46 Hz (gamma-band) by one month postoperatively. Such gamma-band inter-muscular coherence was not observed preoperatively, but became prominent and distributed widely over proximal and distal muscles with the recovery. Neither the gamma-band cortico-muscular coupling (14-30 Hz) observed before lesion, nor a gamma-band oscillation was observed in bilateral motor cortex after lesion. Thus, we propose that an unknown, subcortical oscillator, independent of cortical oscillation, commonly recruits hand/arm muscles and may underlie functional recovery of dexterous finger movements