research

_M. tuberculosis_ interactome analysis unravels potential pathways to drug resistance

Abstract

Drug resistance is a major problem for combating tuberculosis. Lack of understanding of how resistance emerges in bacteria upon drug treatment limits our ability to counter resistance. By analysis of the _Mycobacterium tuberculosis_ interactome network, along with drug-induced expression data from literature, we show possible pathways for the emergence of drug resistance. To a curated set of resistance related proteins, we have identified sets of high propensity paths from different drug targets. Many top paths were upregulated upon exposure to anti-tubercular drugs. Different targets appear to have different propensities for the four resistance mechanisms. Knowledge of important proteins in such pathways enables identification of appropriate _'co-targets'_, which when simultaneously inhibited with the intended target, is likely to help in combating drug resistance. RecA, Rv0823c, Rv0892 and DnaE1 were the best examples of co-targets for combating tuberculosis. This approach is also inherently generic, likely to significantly impact drug discovery

    Similar works