research

Efficient optimization of the integrity behavior of analog nonlinear devices using surrogate models

Abstract

A novel technique to analyze and optimize the integrity behavior of nonlinear analog devices in the presence of noise is proposed. The technique leverages surrogate models, as such reducing the simulation time, avoiding time-consuming and expensive measurements after tape-out and hiding the original netlist of the circuit, while maintaining high accuracy. Easy integration of the surrogates into a circuit simulator together with pertinent subcircuits representing, e. g., board and package, allows mimicking the integrity behavior of a complete setup while still being in the design phase. In this contribution, the method is applied to a case study, being a voltage regulator designed for automotive applications

    Similar works