We generated mice with a selective loss of GABAB receptors in orexin neurons. Orexin neurons in these GABAB1<sup>-/-(orexin)</sup> mice showed reduced responsiveness to GABA<sub>A</sub> receptor agonists due to a compensatory increase in GABAA receptor-mediated inhibition. This increased GABA<sub>A</sub> receptor-mediated inhibition of orexin neurons is due to orexin-1 receptor-mediated activation of local GABAergic interneurons. Surprisingly, orexin neurons were also less responsive to glutamate, apparently because the augmented GABA<sub>A</sub> receptor-mediated inhibition increases the membrane conductance and shunts excitatory currents. These observations indicate that absence of GABA<sub>B</sub> receptors decreases the sensitivity of orexin neurons to both excitatory and inhibitory inputs. GABAB1<sup>-/-(orexin)</sup>mice exhibited severe fragmentation of sleep/wake states during both the light and dark periods without affecting total sleep time or inducing cataplexy, indicating that GABA<sub>B</sub> receptors are crucial regulators of orexin neurons and that "fine tuning" of orexin neurons by inhibitory and excitatory inputs is important for the stability of sleep/waking states