research

Pushing architectural quality further

Abstract

In this paper, the intentions thriving the implementation of computational modeling of building physics as it is approached in the Architectural engineering courses at Ghent University are discussed. During the bachelor degree, courses focus mainly on integration of basic building physics feasibility in the architectural conceptualization. During the final bachelor year, students program their own simplified 2D models for internal condensation and thermal bridges in a spreadsheet, based on realistic detailing from buildings they studied in other courses. These models are intentionally kept both simplified and strongly mathematically based to nurture thorough comprehension of the physical background of problematic design options. Additionally, evaluation of energy performance with official EPB-software is incorporated in the courses because of its high relevance as a legal benchmark. All these models, including EPB, are (semi)static and thus offer only limited but nevertheless useful information on physical, legal, hygienic… viability of different options at reasonable complexity. Furthermore, they induce basic modeling skills as a basis for further development. During the master’s degree, the focus shifts from taxation of the feasibility of design decisions towards energetic performance as one of the starting points and validation criteria of the design process. For students who wish to specialize in the matter, elective courses and master’s thesis projects on optimization, innovative techniques, passive building standards etc. are offered in which advanced dynamic modeling is used. These models offer an important input for this specific design process as they enable precise, nuanced validation of the robustness and sensitivity for certain parameters of different strategies in a given, very complex, situation. By developing both innovative, more precise models for the master classes besides more powerful integration of modeling with design software (BIM) and robust predesign templates for the bachelor courses with master’s student cooperation, the research team supports these courses in achieving output of the highest possible quality

    Similar works