research

Negative affective state mimics effects of perceptual load on spatial perception

Abstract

Recent electrophysiological evidence has shown that perceptual load and negative affective state can produce very similar, early-attention gating effects in early visual areas, modulating the processing of peripheral stimuli. Here we assessed the question of whether or not these modulatory effects of perceptual load and negative affect (NA) lead to comparable changes in spatial perception abilities, which could be captured at the behavioral level. High perceptual load at fixation impaired the precise spatial localization of peripheral textures, relative to a low perceptual load condition. By contrast, the coarse spatial encoding of these peripheral stimuli was not load-dependent, under neutral affective conditions. The transient experience of NA was induced in an independent sample of participants, who showed decreased performance in the localization task, even at a low perceptual-load level. These results were observed in the absence of any systematic eye movement toward the peripheral textures. These findings suggest that spatial location perception is an attention-dependent, as well as state-dependent process, in the sense that NA, very much like load, can dynamically shape early spatial perceptual abilities. Although NA mimics load during spatial localization, we discuss the possibility that these two effects likely depend upon nonoverlapping brain networks

    Similar works