research

Homologous self-organising scale-invariant properties characterise long range species spread and cancer invasion

Abstract

The invariance of some system properties over a range of temporal and/or spatial scales is an attribute of many processes in nature1, often characterised by power law functions and fractal geometry2. In particular, there is growing consensus in that fat-tailed functions like the power law adequately describe long-distance dispersal (LDD) spread of organisms 3,4. Here we show that the spatial spread of individuals governed by a power law dispersal function is represented by a clear and unique signature, characterised by two properties: A fractal geometry of the boundaries of patches generated by dispersal with a fractal dimension D displaying universal features, and a disrupted patch size distribution characterised by two different power laws. Analysing patterns obtained by simulations and real patterns from species dispersal and cell spread in cancer invasion we show that both pattern properties are a direct result of LDD and localised dispersal and recruitment, reflecting population self-organisation

    Similar works