research

Alternative implementations of a fractional order control algorithm on FPGAs

Abstract

Traditionally, microprocessor and digital signal processors have been used extensively in controlling simple processes, such as direct current motors. The Field Programmable Gate Arrays (FPGA) are currently emerging as an alternative to the previously used devices in controlling all sorts of processes. The fractional order proportional-integrative control algorithm has the advantage of enhancing the closed loop performance as compared to traditional proportional-integrative controllers, but the implementation requires a higher number of computations. Implementations of control algorithms on FPGAs are nowadays much faster than implementations on microprocessors. This allows for a more accurate digital realization of the fractional order controller. The paper presents nine alternative implementations of such control algorithm on two different FPGA targets. The experimental results, considering DC motor speed control, show that double, fixed-point and integer data representation may be used efficiently for control purposes

    Similar works