CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Development of the stria vascularis and potassium regulation in the human fetal cochlea : insights into hereditary sensorineural hearing loss
Authors
Susana Marina Chuva de Sousa Lopes
John CMJ de Groot
+4 more
Johan HM Frijns
Margriet A Huisman
Heiko Locher
Liesbeth van Iperen
Publication date
1 January 2015
Publisher
'Wiley'
Doi
View
on
PubMed
Abstract
Sensorineural hearing loss (SNHL) is one of the most common congenital disorders in humans, afflicting one in every thousand newborns. The majority is of heritable origin and can be divided in syndromic and nonsyndromic forms. Knowledge of the expression profile of affected genes in the human fetal cochlea is limited, and as many of the gene mutations causing SNHL likely affect the stria vascularis or cochlear potassium homeostasis (both essential to hearing), a better insight into the embryological development of this organ is needed to understand SNHL etiologies. We present an investigation on the development of the stria vascularis in the human fetal cochlea between 9 and 18 weeks of gestation (W9–W18) and show the cochlear expression dynamics of key potassium‐regulating proteins. At W12, MITF+/SOX10+/KIT+ neural‐crest‐derived melanocytes migrated into the cochlea and penetrated the basement membrane of the lateral wall epithelium, developing into the intermediate cells of the stria vascularis. These melanocytes tightly integrated with Na(+)/K(+)‐ATPase‐positive marginal cells, which started to express KCNQ1 in their apical membrane at W16. At W18, KCNJ10 and gap junction proteins GJB2/CX26 and GJB6/CX30 were expressed in the cells in the outer sulcus, but not in the spiral ligament. Finally, we investigated GJA1/CX43 and GJE1/CX23 expression, and suggest that GJE1 presents a potential new SNHL associated locus. Our study helps to better understand human cochlear development, provides more insight into multiple forms of hereditary SNHL, and suggests that human hearing does not commence before the third trimester of pregnancy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1219–1240, 201
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1002%2Fdneu.22279
Last time updated on 27/03/2019
Ghent University Academic Bibliography
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:archive.ugent.be:7011690
Last time updated on 12/11/2016