thesis

Guidance and control for defense systems against ballistic threats

Abstract

A defense system against ballistic threat is a very complex system from the engineering point of view. It involves different kinds of subsystems and, at the same time, it presents very strict requirements. Technology evolution drives the need of constantly upgrading system’s capabilities. The guidance and control fields are two of the areas with the best progress possibilities. This thesis deals with the guidance and control problems involved in a defense system against ballistic threats. This study was undertaken by analyzing the mission of an intercontinental ballistic missile. Trajectory reconstruction from radar and satellite measurements was carried out with an estimation algorithm for nonlinear systems. Knowing the trajectory is a prerequisite for intercepting the ballistic missile. Interception takes place thanks to a dedicated tactical missile. The guidance and control of this missile were also studied in this work. Particular attention was paid on the estimation of engagement’s variables inside the homing loop. Interceptor missiles are usually equipped with a seeker that provides the angle under which the interceptor sees its target. This single measurement does not guarantee the observability of the variables required by advanced guidance laws such as APN, OGL, or differential games-based laws. A new guidance strategy was proposed, that solves the bad observability problems and returns satisfactory engagement performances. The thesis is concluded by a study of the interceptor most suitable aerodynamic configuration in order to implement the proposed strategy, and by the relative autopilot design. The autopilot implements the lateral acceleration commands from the guidance system. The design was carried out with linear control techniques, considering requirements on the rising time, actuators maximum effort, and response to a bang-bang guidance command. The analysis of the proposed solutions was carried on by means of numerical simulations, developed for each single case-study

    Similar works