research
Exact Maximum Likelihood estimation for the BL-GARCH model under elliptical distributed innovations
- Publication date
- Publisher
Abstract
In this paper, we discuss the class of Bilinear GATRCH (BL-GARCH) models which are capable of capturing simultaneously two key properties of non-linear time series : volatility clustering and leverage effects. It has been observed often that the marginal distributions of such time series have heavy tails ; thus we examine the BL-GARCH model in a general setting under some non-Normal distributions. We investigate some probabilistic properties of this model and we propose and implement a maximum likelihood estimation (MLE) methodology. To evaluate the small-sample performance of this method for the various models, a Monte Carlo study is conducted. Finally, within-sample estimation properties are studied using S&P 500 daily returns, when the features of interest manifest as volatility clustering and leverage effects.BL-GARCH process, elliptical distribution, leverage effects, Maximum Likelihood, Monte Carlo method, volatility clustering.