To advance the development of multilevel inverters (MLIs) for electric vehicle applications, this study introduces novel asymmetric MLI (AMLI) configurations featuring buffer modules to enhance efficiency. A comprehensive comparative analysis of 125 distinct inverter systems is conducted, integrating five different microtopologies and 25 representative symmetrical MLI (SMLI) and AMLI systems. Unlike previous studies, this work employs a successive design process with a graph-based approach to systematically minimize conduction losses. Furthermore, experimental loss measurements ensure practical relevance. By applying Pareto optimization with cost, energy losses, and total harmonic distortion as objective functions, the study identifies the most promising MLI systems among all considered ones. While the cascaded H-bridge MLI emerges as the most cost-effective solution, specific SMLI configurations with 12 or 18 battery cells per module and AMLI designs featuring buffer modules exhibit lower inverter losses. In both cases, the incorporation of microtopologies that enable parallel operation leads to a remarkable reduction in inverter losses by more than 30 % compared to the least efficient MLI systems. Finally, a comparative assessment against a conventional B6-bridge SiC inverter highlights the significant advantages of these optimized MLI configurations in terms of efficiency and system performance